Saturday, 28 October 2017

Função média móvel em c


Como um exemplo SMA, considere uma segurança com os seguintes preços de fechamento em 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29, 28 Uma MA de 10 dias seria a média dos preços de fechamento para os primeiros 10 dias como o primeiro ponto de dados. O ponto de dados seguinte iria cair o preço mais antigo, adicionar o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme mencionado anteriormente, MAs atraso ação preço atual, porque eles são baseados em preços passados ​​quanto maior for o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias porque contém preços nos últimos 200 dias. A duração da MA a ser utilizada depende dos objetivos de negociação, com MAs mais curtos usados ​​para negociação de curto prazo e MAs de longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que ele está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. Momento descendente é confirmado com um crossover de baixa, que ocorre quando um MA de curto prazo cruza abaixo de um MA. I de longo prazo tenho este código: Tenho esta variável GetHistogramValue que é longo e listofhistograms é um Listltlonggt então estou usando GetHistogramValue para obter médias Uma vez que o topo 1000 maior então 5000 então 20000 então 100000. Agora eu quero usar este GetHistogramValue e uma função de SMA assim que eu posso construir uma lista nova que prenderá valores de SMA para cada histograma. Tentei ler sobre sma e eu não entendo ainda. Alguém pode me mostrar como fazer uma função de SMA que obter Histograma e retornar sma Bem, eu acho que você não precisa de uma média móvel ao calcular a média de cada histograma como um todo. Você só precisa calcular um valor razoável e significativo de cada histograma completo que seja comparável aos outros. Em seguida, armazene esses valores em uma Lista ou dentro de seu próprio objeto histograma (como um método GetAvg combinado com uma Propriedade Média). As médias móveis são usadas em conjuntos de dados contínuos ou longos, onde uma parte significativa é analisada de forma rentável com o ponto inicial e final em movimento. Muitas vezes, um método de sobreposição é usado quando se analisa sinais longos. Por outro lado, se você não quiser média todo o histograma, você poderia usar o algoritmo do link que você postou para obter os dados de um determinado framesize. Em seguida, você obterá uma matriz (exatamente como o histograma em si) das médias de cada média-frame-do-histograma. Portanto, se você, por exemplo, quiser comparar 10 valores em um quadro, com um incremento do ponto de início de 1, configure um array de tamanho 247, faça a média dos primeiros 10 valores de histograma, deslize o início por 1, 10 valores e assim por diante. O algoritmo pode ser usado como é para sua finalidade. Basta passar o framesize (que é o comprimento da parte do histograma aqui: 10) eo histograma como parâmetros para o método e salvar a matriz resultante em sua nova lista. Editado por Thorsten Gudera terça-feira, novembro 06, 2017 21:01 Marcado como resposta por chocolade quarta-feira, novembro 07, 2017 22:06 terça-feira, novembro 06, 2017 8:48 PM Todas as respostas o que você quer dizer quotsmaquot Análise de momento estatístico. Análise da Mistura Espectral Editado por Thorsten Gudera Terça-feira, Novembro 06, 2017 7:42 PM Bem, eu acho que você não precisa de uma média móvel ao calcular a média de cada histograma como um todo. Você só precisa calcular um valor razoável e significativo de cada histograma completo que seja comparável aos outros. Em seguida, armazene esses valores em uma Lista ou dentro de seu próprio objeto histograma (como um método GetAvg combinado com uma Propriedade Média). As médias móveis são usadas em conjuntos de dados contínuos ou longos, onde uma parte significativa é analisada de forma rentável com o ponto inicial e final em movimento. Muitas vezes, um método de sobreposição é usado quando se analisa sinais longos. Por outro lado, se você não quiser média todo o histograma, você poderia usar o algoritmo do link que você postou para obter os dados de um determinado framesize. Em seguida, você obterá uma matriz (exatamente como o histograma em si) das médias de cada média-frame-do-histograma. Portanto, se você, por exemplo, quiser comparar 10 valores em um quadro, com um incremento do ponto de início de 1, configure um array de tamanho 247, faça a média dos primeiros 10 valores de histograma, deslize o início por 1, 10 valores e assim por diante. O algoritmo pode ser usado como é para sua finalidade. Basta passar o framesize (que é o comprimento da parte do histograma aqui: 10) eo histograma como parâmetros para o método e salvar a matriz resultante em sua nova lista. Editado por Thorsten Gudera terça-feira, 6 de novembro de 2017 21:01 Marcado como resposta por chocolade quarta-feira, novembro 07, 2017 8:48 PM Microsoft está conduzindo uma pesquisa on-line para entender sua opinião de O site Msdn. Se você optar por participar, o questionário on-line será apresentado a você quando você deixar o site Msdn. Gostaria de participar Ajude-nos a melhorar o MSDN. Visite nossa página UserVoice para enviar e votar em ideasMoving Médias - Simple e exponencial Moving Averages - Simple e Exponencial Introdução As médias móveis alisam os dados de preços para formar um indicador de tendência seguinte. Eles não prevêem a direção do preço, mas sim definir a direção atual com um atraso. As médias móveis são retardadas porque são baseadas em preços passados. Apesar desse atraso, as médias móveis ajudam a suavizar a ação dos preços e filtrar o ruído. Eles também formam os blocos de construção para muitos outros indicadores técnicos e sobreposições, como Bandas Bollinger. MACD eo Oscilador McClellan. Os dois tipos mais populares de médias móveis são a Média Móvel Simples (SMA) e a Média Móvel Exponencial (EMA). Essas médias móveis podem ser usadas para identificar a direção da tendência ou definir níveis potenciais de suporte e resistência. Here039s um gráfico com um SMA e um EMA nele: Cálculo simples da média móvel Uma média movente simples é dada forma computando o preço médio de uma segurança sobre um número específico dos períodos. A maioria das médias móveis são baseadas em preços de fechamento. Uma média móvel simples de 5 dias é a soma de cinco dias dos preços de fechamento dividida por cinco. Como seu nome indica, uma média móvel é uma média que se move. Os dados antigos são eliminados à medida que novos dados são disponibilizados. Isso faz com que a média se mova ao longo da escala de tempo. Abaixo está um exemplo de uma média móvel de 5 dias evoluindo ao longo de três dias. O primeiro dia da média móvel cobre simplesmente os últimos cinco dias. O segundo dia da média móvel cai o primeiro ponto de dados (11) e adiciona o novo ponto de dados (16). O terceiro dia da média móvel continua caindo o primeiro ponto de dados (12) e adicionando o novo ponto de dados (17). No exemplo acima, os preços aumentam gradualmente de 11 para 17 ao longo de um total de sete dias. Observe que a média móvel também aumenta de 13 para 15 ao longo de um período de cálculo de três dias. Observe também que cada valor de média móvel está logo abaixo do último preço. Por exemplo, a média móvel para o dia um é igual a 13 eo último preço é 15. Os preços dos quatro dias anteriores eram mais baixos e isso faz com que a média móvel fique atrasada. Cálculo da média móvel exponencial As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. A ponderação aplicada ao preço mais recente depende do número de períodos na média móvel. Há três etapas para calcular uma média móvel exponencial. Primeiro, calcule a média móvel simples. Uma média móvel exponencial (EMA) tem que começar em algum lugar assim que uma média móvel simples é usada como o EMA anterior do período anterior no primeiro cálculo. Em segundo lugar, calcular o multiplicador de ponderação. Em terceiro lugar, calcule a média móvel exponencial. A fórmula abaixo é para um EMA de 10 dias. Uma média móvel exponencial de 10 períodos aplica uma ponderação de 18,18 ao preço mais recente. Um EMA de 10 períodos também pode ser chamado de EMA 18.18. Um EMA de 20 períodos aplica uma ponderação de 9,52 ao preço mais recente (2 / (201) .0952). Observe que a ponderação para o período de tempo mais curto é mais do que a ponderação para o período de tempo mais longo. De fato, a ponderação cai pela metade cada vez que o período de média móvel dobra. Se você deseja uma porcentagem específica para uma EMA, use esta fórmula para convertê-la em períodos de tempo e, em seguida, insira esse valor como o parâmetro EMA039s: Abaixo está um exemplo de planilha de uma média móvel simples de 10 dias e um valor de 10- Dia média móvel exponencial para a Intel. As médias móveis simples são diretas e exigem pouca explicação. A média de 10 dias simplesmente se move conforme novos preços se tornam disponíveis e os preços antigos caem. A média móvel exponencial começa com o valor da média móvel simples (22,22) no primeiro cálculo. Após o primeiro cálculo, a fórmula normal assume o controle. Como um EMA começa com uma média móvel simples, seu valor verdadeiro não será realizado até 20 ou mais períodos mais tarde. Em outras palavras, o valor na planilha do Excel pode diferir do valor do gráfico por causa do curto período de retorno. Esta planilha só remonta 30 períodos, o que significa que o afeto da média móvel simples teve 20 períodos para se dissipar. StockCharts volta pelo menos 250 períodos (geralmente muito mais) para os seus cálculos para os efeitos da média móvel simples no primeiro cálculo totalmente dissipada. O fator de Lag Quanto maior a média móvel, mais o lag. Uma média móvel exponencial de 10 dias abraçará os preços muito de perto e virará logo após os preços virarem. Curtas médias móveis são como barcos de velocidade - ágil e rápido para mudar. Em contraste, uma média móvel de 100 dias contém muitos dados passados ​​que o desaceleram. As médias móveis mais longas são como os petroleiros do oceano - lethargic e lentos mudar. É preciso um movimento de preços maior e mais longo para uma média móvel de 100 dias para mudar de rumo. O gráfico acima mostra o SampP 500 ETF com uma EMA de 10 dias seguindo de perto os preços e uma moagem SMA de 100 dias mais alta. Mesmo com o declínio de janeiro-fevereiro, a SMA de 100 dias manteve o curso e não recusou. O SMA de 50 dias se encaixa em algum lugar entre as médias móveis de 10 e 100 dias quando se trata do fator de latência. Simples vs médias exponenciais Moving Embora existam diferenças claras entre médias móveis simples e médias móveis exponenciais, um não é necessariamente melhor do que o outro. As médias móveis exponenciais têm menos atraso e são, portanto, mais sensíveis aos preços recentes - e às recentes mudanças nos preços. As médias móveis exponenciais virarão antes de médias móveis simples. As médias móveis simples, por outro lado, representam uma verdadeira média de preços para todo o período de tempo. Como tal, as médias móveis simples podem ser mais adequadas para identificar níveis de suporte ou resistência. Preferência média móvel depende de objetivos, estilo analítico e horizonte de tempo. Chartists deve experimentar com ambos os tipos de médias móveis, bem como diferentes prazos para encontrar o melhor ajuste. O gráfico abaixo mostra a IBM com a SMA de 50 dias em vermelho ea EMA de 50 dias em verde. Ambos atingiram o pico no final de janeiro, mas o declínio no EMA foi mais nítida do que o declínio no SMA. A EMA apareceu em meados de fevereiro, mas a SMA continuou baixa até o final de março. Observe que a SMA apareceu mais de um mês após a EMA. Comprimentos e prazos A duração da média móvel depende dos objetivos analíticos. Curtas médias móveis (5-20 períodos) são mais adequados para as tendências de curto prazo e de negociação. Os cartistas interessados ​​em tendências de médio prazo optariam por médias móveis mais longas que poderiam estender 20-60 períodos. Investidores de longo prazo preferem médias móveis com 100 ou mais períodos. Alguns comprimentos de média móvel são mais populares do que outros. A média móvel de 200 dias é talvez a mais popular. Devido ao seu comprimento, esta é claramente uma média móvel a longo prazo. Em seguida, a média móvel de 50 dias é bastante popular para a tendência de médio prazo. Muitos chartists usam as médias móveis de 50 dias e de 200 dias junto. Curto prazo, uma média móvel de 10 dias foi bastante popular no passado porque era fácil de calcular. Um simplesmente adicionou os números e moveu o ponto decimal. Identificação de tendências Os mesmos sinais podem ser gerados usando médias móveis simples ou exponenciais. Como mencionado acima, a preferência depende de cada indivíduo. Esses exemplos abaixo usarão médias móveis simples e exponenciais. O termo média móvel se aplica a médias móveis simples e exponenciais. A direção da média móvel transmite informações importantes sobre os preços. Uma média móvel em ascensão mostra que os preços estão aumentando. Uma média móvel em queda indica que os preços, em média, estão caindo. A subida da média móvel de longo prazo reflecte uma tendência de alta a longo prazo. A queda da média móvel a longo prazo reflecte uma tendência de baixa a longo prazo. O gráfico acima mostra 3M (MMM) com uma média móvel exponencial de 150 dias. Este exemplo mostra quão bem as médias móveis funcionam quando a tendência é forte. A EMA de 150 dias recusou-se em novembro de 2007 e novamente em janeiro de 2008. Observe que foi necessário um declínio de 15 para reverter a direção dessa média móvel. Estes indicadores de atraso identificam inversões de tendência à medida que ocorrem (na melhor das hipóteses) ou depois de ocorrerem (na pior das hipóteses). MMM continuou menor em março de 2009 e, em seguida, subiu 40-50. Observe que a EMA de 150 dias não apareceu até depois desse aumento. Uma vez que o fez, no entanto, MMM continuou maior nos próximos 12 meses. As médias móveis trabalham brilhantemente em tendências fortes. Crossovers duplos Duas médias móveis podem ser usadas juntas para gerar sinais cruzados. Na Análise Técnica dos Mercados Financeiros. John Murphy chama isso de método de cruzamento duplo. Os cruzamentos duplos envolvem uma média móvel relativamente curta e uma média móvel relativamente longa. Como com todas as médias móveis, o comprimento geral da média móvel define o prazo para o sistema. Um sistema que utilizasse um EMA de 5 dias e um EMA de 35 dias seria considerado de curto prazo. Um sistema usando uma SMA de 50 dias e um SMA de 200 dias seria considerado de médio prazo, talvez até de longo prazo. Um crossover de alta ocorre quando a média móvel mais curta cruza acima da média móvel mais longa. Isso também é conhecido como uma cruz de ouro. Um crossover de baixa ocorre quando a média móvel mais curta cruza abaixo da média móvel mais longa. Isso é conhecido como uma cruz morta. Os crossovers médios móveis produzem sinais relativamente atrasados. Afinal, o sistema emprega dois indicadores de atraso. Quanto mais longos os períodos de média móvel, maior o atraso nos sinais. Esses sinais funcionam muito bem quando uma boa tendência se apodera. No entanto, um sistema de crossover média móvel irá produzir lotes de Whipsaws na ausência de uma forte tendência. Há também um método de crossover triplo que envolve três médias móveis. Mais uma vez, um sinal é gerado quando a média móvel mais curta atravessa as duas médias móveis mais longas. Um simples sistema de crossover triplo pode envolver médias móveis de 5 dias, 10 dias e 20 dias. O gráfico acima mostra Home Depot (HD) com um EMA de 10 dias (linha pontilhada verde) e EMA de 50 dias (linha vermelha). A linha preta é o fechamento diário. Usando um crossover média móvel teria resultado em três whipsaws antes de pegar um bom comércio. O EMA de 10 dias quebrou abaixo do EMA de 50 dias em outubro atrasado (1), mas este não durou por muito tempo enquanto os 10 dias se moveram para trás acima em novembro meados de (2). Este cruzamento durou mais, mas o próximo crossover de baixa em janeiro (3) ocorreu perto dos níveis de preços de novembro, resultando em outra whipsaw. Esta cruz bearish não durou por muito tempo enquanto o EMA de 10 dias moveu para trás acima dos 50 dias alguns dias mais tarde (4). Depois de três sinais ruins, o quarto sinal prefigurou um movimento forte como o estoque avançou mais de 20. Existem dois takeaways aqui. Primeiramente, os crossovers são prone ao whipsaw. Um filtro de preço ou tempo pode ser aplicado para ajudar a evitar whipsaws. Os comerciantes podem exigir que o crossover durar 3 dias antes de agir ou exigir a EMA de 10 dias para mover acima / abaixo do EMA de 50 dias por um determinado montante antes de agir. Em segundo lugar, o MACD pode ser usado para identificar e quantificar esses cruzamentos. MACD (10,50,1) mostrará uma linha representando a diferença entre as duas médias móveis exponenciais. MACD torna-se positivo durante uma cruz de ouro e negativo durante uma cruz morta. O Oscilador de Preço Percentual (PPO) pode ser usado da mesma forma para mostrar diferenças percentuais. Observe que o MACD e o PPO são baseados em médias móveis exponenciais e não coincidirão com médias móveis simples. Este gráfico mostra Oracle (ORCL) com a EMA de 50 dias, EMA de 200 dias e MACD (50,200,1). Havia quatro crossovers de média móvel durante um período de 2 1/2 anos. Os três primeiros resultaram em whipsaws ou maus negócios. Uma tendência sustentada começou com o quarto crossover como ORCL avançado para os 20s meados. Mais uma vez, os crossovers de média móvel funcionam muito bem quando a tendência é forte, mas produzem perdas na ausência de uma tendência. Crossovers de preço As médias móveis também podem ser usadas para gerar sinais com crossovers de preços simples. Um sinal de alta é gerado quando os preços se movem acima da média móvel. Um sinal de baixa é gerado quando os preços se movem abaixo da média móvel. Os crossovers do preço podem ser combinados para negociar dentro da tendência mais grande. A média móvel mais longa define o tom para a tendência maior e a média móvel mais curta é usada para gerar os sinais. Um olharia para cruzes de preço de alta somente quando os preços já estão acima da média móvel mais longa. Isso seria negociar em harmonia com a maior tendência. Por exemplo, se o preço estiver acima da média móvel de 200 dias, os chartistas só se concentrarão nos sinais quando o preço se mover acima da média móvel de 50 dias. Obviamente, um movimento abaixo da média móvel de 50 dias precederia tal sinal, mas tais cruzamentos de baixa seriam ignorados porque a tendência maior está para cima. Uma cruz bearish sugeriria simplesmente um pullback dentro de um uptrend mais grande. Uma volta cruzada acima da média móvel de 50 dias indicaria uma subida dos preços e continuação da maior tendência de alta. O gráfico seguinte mostra a Emerson Electric (EMR) com a EMA de 50 dias e a EMA de 200 dias. O estoque movido acima e realizada acima da média móvel de 200 dias em agosto. Houve mergulhos abaixo dos 50 dias EMA no início de novembro e novamente no início de fevereiro. Os preços recuaram rapidamente acima dos 50 dias EMA para fornecer sinais de alta (setas verdes) em harmonia com a maior tendência de alta. MACD (1,50,1) é mostrado na janela do indicador para confirmar cruzamentos de preços acima ou abaixo do EMA de 50 dias. O EMA de 1 dia é igual ao preço de fechamento. MACD (1,50,1) é positivo quando o fechamento está acima do EMA de 50 dias e negativo quando o fechamento está abaixo do EMA de 50 dias. Suporte e Resistência As médias móveis também podem atuar como suporte em uma tendência de alta e resistência em uma tendência de baixa. Uma tendência de alta de curto prazo pode encontrar suporte perto da média móvel simples de 20 dias, que também é usada em Bandas de Bollinger. Uma tendência de alta de longo prazo pode encontrar apoio perto da média móvel simples de 200 dias, que é a média móvel mais popular a longo prazo. Se fato, a média móvel de 200 dias pode oferecer suporte ou resistência simplesmente porque é tão amplamente utilizado. É quase como uma profecia auto-realizável. O gráfico acima mostra o NY Composite com a média móvel simples de 200 dias de meados de 2004 até o final de 2008. Os 200 dias fornecidos suportam várias vezes durante o avanço. Uma vez que a tendência reverteu com uma quebra de apoio superior dupla, a média móvel de 200 dias agiu como resistência em torno de 9500. Não espere suporte exato e níveis de resistência de médias móveis, especialmente as médias móveis mais longas. Os mercados são impulsionados pela emoção, o que os torna propensos a superações. Em vez de níveis exatos, as médias móveis podem ser usadas para identificar zonas de suporte ou de resistência. Conclusões As vantagens de usar médias móveis precisam ser ponderadas contra as desvantagens. As médias móveis são a tendência que segue, ou retardar, os indicadores que serão sempre um passo atrás. Isso não é necessariamente uma coisa ruim embora. Afinal, a tendência é o seu amigo e é melhor para o comércio na direção da tendência. As médias móveis asseguram que um comerciante está em linha com a tendência atual. Mesmo que a tendência é seu amigo, os títulos gastam uma grande quantidade de tempo em intervalos de negociação, o que torna as médias móveis ineficazes. Uma vez em uma tendência, as médias móveis mantê-lo-ão dentro, mas dar também sinais atrasados. Don039t esperar para vender no topo e comprar na parte inferior usando médias móveis. Tal como acontece com a maioria das ferramentas de análise técnica, médias móveis não devem ser utilizados por conta própria, mas em conjunto com outras ferramentas complementares. Os cartistas podem usar médias móveis para definir a tendência geral e, em seguida, usar RSI para definir overbought ou oversold níveis. Adicionando médias móveis para gráficos StockCharts As médias móveis estão disponíveis como um recurso de sobreposição de preços na bancada do SharpCharts. Usando o menu suspenso Sobreposições, os usuários podem escolher uma média móvel simples ou uma média móvel exponencial. O primeiro parâmetro é usado para definir o número de períodos de tempo. Um parâmetro opcional pode ser adicionado para especificar qual campo de preço deve ser usado nos cálculos - O para o Open, H para o Alto, L para o Baixo e C para o Close. Uma vírgula é usada para separar os parâmetros. Outro parâmetro opcional pode ser adicionado para deslocar as médias móveis para a esquerda (passado) ou para a direita (futuro). Um número negativo (-10) deslocaria a média móvel para a esquerda 10 períodos. Um número positivo (10) deslocaria a média móvel para o direito 10 períodos. Múltiplas médias móveis podem ser superados o preço parcela simplesmente adicionando outra linha de superposição para a bancada. Os membros do StockCharts podem alterar as cores eo estilo para diferenciar entre várias médias móveis. Depois de selecionar um indicador, abra Opções Avançadas clicando no pequeno triângulo verde. As Opções Avançadas também podem ser usadas para adicionar uma sobreposição média móvel a outros indicadores técnicos como RSI, CCI e Volume. Clique aqui para um gráfico ao vivo com várias médias móveis diferentes. Usando Médias Móveis com Varreduras StockCharts Aqui estão alguns exemplos de varreduras que os membros da StockCharts podem usar para varrer para várias situações de média móvel: Bullish Moving Average Cross: Esta varredura procura ações com uma média móvel em ascensão de 150 dias simples e uma linha de alta dos 5 EMA de dia e EMA de 35 dias. A média móvel de 150 dias está subindo, desde que ela esteja negociando acima de seu nível cinco dias atrás. Um cruzamento de alta ocorre quando o EMA de 5 dias se move acima do EMA de 35 dias acima do volume médio. Bearish Moving Average Cross: Esta pesquisa procura por ações com uma queda de 150 dias de média móvel simples e uma cruz de baixa dos 5 dias EMA e 35 dias EMA. A média móvel de 150 dias está caindo enquanto ela está negociando abaixo de seu nível cinco dias atrás. Uma cruz de baixa ocorre quando a EMA de 5 dias se move abaixo da EMA de 35 dias acima do volume médio. Estudo adicional O livro de John Murphy tem um capítulo dedicado a médias móveis e seus vários usos. Murphy abrange os prós e os contras de médias móveis. Além disso, Murphy mostra como as médias móveis funcionam com Bollinger Bands e sistemas de negociação baseados em canais. Análise Técnica dos Mercados Financeiros John MurphyIm não certeza da solução correta embora uma vez que a soma da média de cada amostra iria introduzir uma quantidade razoável de erro de arredondamento. Hmm. Gostaria de saber se seperating a parte fracionária de toda a parte iria ajudar. Divida a parte inteira de cada número pela contagem. Manter três somas correntes: 1) A média das partes inteiras, 2) O restante de cada divisão, e 3) A parte fracionária de cada número. Cada vez que a parte inteira de um número é dividida, o resultado da parte inteira é adicionado à soma corrente média e o restante é adicionado à soma corrente restante. Quando a soma corrente restante obtém um valor maior ou igual à contagem, a sua divisão pela contagem com o resultado da parte inteira adicionada à soma média corrente e o restante adicionado à soma restante em curso. Também, em cada cálculo, a parte fracionária é adicionada à soma de corrida fracionária. Quando a média é terminada, a soma corrente restante é dividida pela contagem e o resultado é adicionado à soma média corrente como um número flutuante. Por exemplo: Agora o que fazer com a soma de execução fracionada. O perigo de estouro é muito menos provável aqui, embora ainda possível, então uma maneira de lidar com isso seria dividir a soma de execução fracionária pela contagem no final e adicioná-lo ao nosso resultado: Uma alternativa seria verificar a execução fracionária Soma em cada cálculo para ver se ele é maior ou igual a contar. Quando isso acontece, basta fazer a mesma coisa que fazemos com o restante executando soma. Excelente Jomit Vaghela 6-Mar-07 20:00 Eu gostei do que você disse pequenos trabalhos rapidamente se transformar em grandes empregos. Pensar em otimização durante a codificação é uma boa prática. Grande esforço e explicação, Obrigado Mike DiRenzo 5-Mar-07 15:26 Esta é a primeira vez que respondi a um de seus artigos. No entanto, sou um leitor muito ávido. Enquanto na faculdade, eu tinha que computar médias móveis ponderadas e simples também. Heck, eu mesmo tive que criar alguns dos meus próprios algoritmos de média móvel em uma implementação de ERP personalizado há algum tempo com base em algumas das mesmas fórmulas que eu aprendi em operações 101. Mas esta implementação, usando Generics, supera em muito qualquer coisa em termos de otimização, Simplicidade, e frescura direita darn. Muito obrigado por isso. Um de seus muitos fãs, Em silêncio e silêncio, a verdade fica clara. Ewma gobgob 5-Mar-07 4:30 Se você tentar calcular uma média móvel simples, você tem que manter uma coleção, o que é bastante complexo para uma tarefa tão simples. Como sobre o uso de um ewma Suas 2 linhas de código, muito mais simples. Alfa exp (-elapsedTimeSinceLastValue) ewma alfa ewma (1-alfa) newValue Re: ewma Marc Clifton 5-Mar-07 4:47 Como sobre o uso de um ewma Ideia interessante. Para os leitores que não sabem o que é um ewma, é um Exponential Weighted Moving Average. As pessoas são apenas notoriamente impossíveis. --DavidCrow Theres NENHUMA desculpa para não comentar seu código. - John Simmons / programador proscrito As pessoas que dizem que refatorarão seu código mais tarde para torná-lo bom não entendem refatoração, nem a arte eo ofício de programação. - Josh Smith Re: ewma pwasser 5-Mar-07 12:21 Uma estimativa da média móvel se o tamanho do bin para a média móvel for n pode ser obtido por: NewAverage (((n-1) OldAverage) newValue) / n Isso funciona uma vez que a caixa está cheia (número de amostra n). O compartimento parcialmente cheio é muitas vezes tratado usando um valor de semente para a média móvel inicial (OldAverage) e, em seguida, usando esse cálculo. Isso pressupõe uma distribuição normal de valores etc. Você foi ocupado Colin Angus Mackay 4-Mar-07 11:37 Postando dois artigos nesta noite. Grande trabalho eu não sei como você faz isso. Ive tem cerca de 4 ou 5 artigos metade terminou e eu só nunca parecem encontrar o tempo para completá-los. Bem. Talvez se eu ficasse fora do salão, eu conseguiria. Re: Youve sido ocupado Marc Clifton 4-Mar-07 13:25 Colin Angus Mackay escreveu: Postando dois artigos esta noite. Grande trabalho Obrigado, eu estava realmente escrevendo o artigo sobre a média correndo e percebi que a lista circular seria realmente um artigo stand-alone realmente bom. Além disso, eles são artigos leves. Posso fazer isso rapidamente. É apenas difícil de pensar em coisas úteis, mas simples. Acontece que eu precisava dessas duas classes de qualquer maneira. As pessoas são apenas notoriamente impossíveis. --DavidCrow Theres NENHUMA desculpa para não comentar seu código. - John Simmons / programador proscrito As pessoas que dizem que refatorarão seu código mais tarde para torná-lo bom não entendem refatoração, nem a arte eo ofício de programação. - Josh Smith Re: Youve sido ocupado JeffPClark 8-Mar-07 0:07 Pelo que eu li de Marc, ele provavelmente tem um programa que pode examinar um pedaço de código e explicar os detalhes intrincados, em seguida, publicá-lo diretamente para o projeto de código . Jeff Clark Arquiteto Arquiteto JP Clark, INC. Columbus, Ohio Última Atualização: 12-Oct-16 5:53 Geral Notícias Sugestão Pergunta Erro Resposta Joke Praise Rant Admin Use CtrlLeft / Right para mudar Mensagens, CtrlUp / Abaixo para alternar segmentos, CtrlShiftLeft / Direita para alternar páginas. Médias / Média móvel simples Médias / Média móvel simples Você é encorajado a resolver esta tarefa de acordo com a descrição da tarefa, usando qualquer idioma que você conheça. Calculando a média móvel simples de uma série de números. Criar uma função stateful / classe / instância que leva um período e retorna uma rotina que leva um número como argumento e retorna uma média móvel simples de seus argumentos até agora. Uma m�ia m�el simples �um m�odo para calcular uma m�ia de um fluxo de n�eros calculando apenas a m�ia dos �timos n�eros de 160 P 160 a partir do fluxo 160, em que 160 P 160 �conhecido como o per�do. Ele pode ser implementado chamando uma rotina de iniciação com 160 P 160 como argumento, 160 I (P), 160 que deve retornar uma rotina que, quando chamada com membros individuais, sucessivos de um fluxo de números, calcula a média de Para), os últimos 160 P 160 deles, vamos chamar este 160 SMA (). A palavra 160 estado 160 na descrição da tarefa refere-se à necessidade de 160 SMA () 160 lembrar determinadas informações entre as chamadas para ele: 160 O período, 160 P 160 Um recipiente ordenado de pelo menos os últimos 160 P 160 números de cada um dos Suas chamadas individuais. Stateful 160 também significa que chamadas sucessivas para 160 I (), 160 o inicializador, 160 devem retornar rotinas separadas que não 160 não compartilham o estado salvo para que possam ser usadas em dois fluxos de dados independentes. Pseudo-código para uma implementação de 160 SMA 160 é: Esta versão usa uma fila persistente para conter os valores p mais recentes. Cada função retornada de init-moving-average tem seu estado em um átomo contendo um valor de fila. Esta implementação usa uma lista circular para armazenar os números dentro da janela no início de cada ponteiro de iteração refere-se à célula de lista que mantém o valor apenas movendo para fora da janela e para ser substituído com o valor apenas adicionado. Usando um fechamento editar Atualmente este sma não pode ser nogc porque ele aloca um encerramento no heap. Alguma análise de escape pode remover a alocação de heap. Usando uma edição de estrutura Esta versão evita a alocação de heap do fechamento mantendo os dados no quadro de pilha da função principal. Mesmo resultado: Para evitar que as aproximações de ponto flutuante sigam se acumulando e crescendo, o código poderia executar uma soma periódica em toda a matriz de filas circulares. Esta implementação produz dois estados de compartilhamento de objetos (função). É idiomático em E separar a entrada da saída (ler a partir da escrita) em vez de combiná-los em um objeto. A estrutura é a mesma que a implementação do Desvio PadrãoE. O programa elixir abaixo gera uma função anônima com um período embutido p, que é usado como o período da média móvel simples. A função de execução lê entrada numérica e passa para a função anônima recém-criada e, em seguida, inspeciona o resultado para STDOUT. A saída é mostrada abaixo, com a média, seguida pela entrada agrupada, formando a base de cada média móvel. Erlang tem fechamentos, mas variáveis ​​imutáveis. Uma solução então é usar processos e uma simples mensagem passando API baseada. As linguagens de matriz têm rotinas para calcular os avarages deslizando para uma determinada seqüência de itens. É menos eficiente para loop como nos comandos a seguir. Solicita continuamente uma entrada I. Que é adicionado ao final de uma lista L1. L1 pode ser encontrado pressionando 2ND / 1, e a média pode ser encontrada em List / OPS Pressione ON para terminar o programa. Função que retorna uma lista contendo os dados médios do argumento fornecido Programa que retorna um valor simples em cada invocação: list é a média da lista: p é o período: 5 retorna a lista média: Exemplo 2: Usando o programa movinav2 (i , 5) - Inicializando o cálculo da média móvel e definindo o período de 5 movinav2 (3, x): x - novos dados na lista (valor 3), e o resultado será armazenado na variável x e exibido movinav2 (4, x) : X - novos dados (valor 4), eo novo resultado será armazenado na variável x, e exibido (43) / 2. Descrição da função movinavg: variável r - é o resultado (a lista média) que será retornada variável i - é a variável de índice, e aponta para o fim da sub-lista a lista sendo calculada a média. Variável z - uma variável auxiliar A função usa a variável i para determinar quais valores da lista serão considerados no cálculo da média seguinte. Em cada iteração, a variável i aponta para o último valor na lista que será utilizado no cálculo médio. Portanto, só precisamos descobrir qual será o primeiro valor na lista. Geralmente bem tem que considerar p elementos, então o primeiro elemento será o indexado por (i-p1). No entanto, nas primeiras iterações, esse cálculo será normalmente negativo, de modo que a seguinte equação evitará índices negativos: max (i-p1,1) ou, arranjar a equação, max (i-p, 0) 1. Mas o número de elementos nas primeiras iterações também será menor, o valor correto será (índice final - índice de início 1) ou, arranjar a equação, (i - (max (ip, 0) 1) e então , (I-max (ip, 0)). A variável z detém o valor comum (max (ip), 0) então o beginindex será (z1) e os numberofelements serão (iz) mid (list, z1, iz) retornará a lista de valor que será a soma média .) Irá somá-los soma (.) / (Iz) ri irá média deles e armazenar o resultado no lugar apropriado na lista de resultados Usando um fecho e criando uma função

No comments:

Post a Comment